Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 873
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2320013121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547060

RESUMO

Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.


Assuntos
Fator de Iniciação 2 em Eucariotos , Processamento de Proteína Pós-Traducional , Animais , Humanos , Actinas/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo
2.
Mol Cell ; 84(6): 995-997, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518749

RESUMO

Chakrabarty et al.1 demonstrate that phospho-EIF2α (pEIF2α), the translation initiation factor that mediates the integrated stress response (ISR), is necessary and sufficient for the autophagic degradation of mitochondria following the addition of mitochondrial stressors.


Assuntos
Mitocôndrias , Estresse Fisiológico , Fosforilação , Mitocôndrias/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo
3.
Curr Biol ; 34(7): 1390-1402.e4, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38428416

RESUMO

Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.


Assuntos
Transdução de Sinais , eIF-2 Quinase , Animais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Apoptose , Movimento Celular , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos
4.
Biochem J ; 481(7): 481-498, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38440860

RESUMO

The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.


Assuntos
Fator de Iniciação 2 em Eucariotos , Exorribonucleases , Fatores de Alongamento de Peptídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo
5.
J Biol Chem ; 300(3): 105673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272235

RESUMO

The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.


Assuntos
Fator de Iniciação 2 em Eucariotos , Genes Supressores de Tumor , Ubiquitina-Proteína Ligases , Ubiquitinação , Regulação para Cima , Humanos , Células A549 , Proliferação de Células/genética , AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Ubiquitinação/genética , Regulação para Cima/genética , Movimento Celular/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Elife ; 122024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38266075

RESUMO

Initiating translation of most eukaryotic mRNAs depends on recruitment of methionyl initiator tRNA (Met-tRNAi) in a ternary complex (TC) with GTP-bound eukaryotic initiation factor 2 (eIF2) to the small (40S) ribosomal subunit, forming a 43S preinitiation complex (PIC) that attaches to the mRNA and scans the 5'-untranslated region (5' UTR) for an AUG start codon. Previous studies have implicated mammalian eIF2A in GTP-independent binding of Met-tRNAi to the 40S subunit and its recruitment to specialized mRNAs that do not require scanning, and in initiation at non-AUG start codons, when eIF2 function is attenuated by phosphorylation of its α-subunit during stress. The role of eIF2A in translation in vivo is poorly understood however, and it was unknown whether the conserved ortholog in budding yeast can functionally substitute for eIF2. We performed ribosome profiling of a yeast deletion mutant lacking eIF2A and isogenic wild-type (WT) cells in the presence or absence of eIF2α phosphorylation induced by starvation for amino acids isoleucine and valine. Whereas starvation of WT confers changes in translational efficiencies (TEs) of hundreds of mRNAs, the eIF2AΔ mutation conferred no significant TE reductions for any mRNAs in non-starved cells, and it reduced the TEs of only a small number of transcripts in starved cells containing phosphorylated eIF2α. We found no evidence that eliminating eIF2A altered the translation of mRNAs containing putative internal ribosome entry site (IRES) elements, or harboring uORFs initiated by AUG or near-cognate start codons, in non-starved or starved cells. Thus, very few mRNAs (possibly only one) appear to employ eIF2A for Met-tRNAi recruitment in yeast cells, even when eIF2 function is attenuated by stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Códon de Iniciação/genética , Fator de Iniciação 2 em Eucariotos/genética , Fosforilação , Regiões 5' não Traduzidas , Guanosina Trifosfato , Mamíferos
7.
Nucleic Acids Res ; 52(4): 1830-1846, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281137

RESUMO

Diverse environmental insults induce the integrated stress response (ISR), which features eIF2 phosphorylation and translational control that serves to restore protein homeostasis. The eIF2 kinase GCN2 is a first responder in the ISR that is activated by amino acid depletion and other stresses not directly related to nutrients. Two mechanisms are suggested to trigger an ordered process of GCN2 activation during stress: GCN2 monitoring stress via accumulating uncharged tRNAs or by stalled and colliding ribosomes. Our results suggest that while ribosomal collisions are indeed essential for GCN2 activation in response to translational elongation inhibitors, conditions that trigger deacylation of tRNAs activate GCN2 via its direct association with affected tRNAs. Both mechanisms require the GCN2 regulatory domain related to histidyl tRNA synthetases. GCN2 activation by UV irradiation features lowered amino acids and increased uncharged tRNAs and UV-induced ribosome collisions are suggested to be dispensable. We conclude that there are multiple mechanisms that activate GCN2 during diverse stresses.


Assuntos
Proteínas Serina-Treonina Quinases , Aminoácidos/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ribossomos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Humanos
8.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279321

RESUMO

Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. Thus, interferon-γ (IFNG) mRNA activates PKR through a 5'-terminal 203-nucleotide pseudoknot structure, thereby strongly downregulating its own translation and preventing a harmful hyper-inflammatory response. Tumor necrosis factor-α (TNF) pre-mRNA encodes within the 3'-untranslated region (3'-UTR) a 104-nucleotide RNA pseudoknot that activates PKR to enhance its splicing by an order of magnitude while leaving mRNA translation intact, thereby promoting effective TNF protein expression. Adult and fetal globin genes encode pre-mRNA structures that strongly activate PKR, leading to eIF2α phosphorylation that greatly enhances spliceosome assembly and splicing, yet also structures that silence PKR activation upon splicing to allow for unabated globin mRNA translation essential for life. Regulatory circuits resulting in each case from PKR activation were reviewed previously. Here, we analyze mutations within these genes created to delineate the RNA structures that activate PKR and to deconvolute their folding. Given the critical role of intragenic RNA activators of PKR in gene regulation, such mutations reveal novel potential RNA targets for human disease.


Assuntos
Precursores de RNA , RNA , Humanos , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Biossíntese de Proteínas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , RNA Mensageiro/genética , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Nucleotídeos/metabolismo , Globinas/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo
9.
Respir Res ; 24(1): 287, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978501

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcriptional signals compared to previous single cell or bulk RNA-Seq studies. METHODS: We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia). RESULTS: We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (important for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically normal-appearing tissue in IPF. CONCLUSIONS: Our findings demonstrate that histologically normal-appearing regions from the IPF lung are transcriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deactivation of wound healing pathways.


Assuntos
Fator de Iniciação 2 em Eucariotos , Fibrose Pulmonar Idiopática , Humanos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Transcriptoma , Fibrose
10.
DNA Cell Biol ; 42(12): 711-719, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862122

RESUMO

Oridonin (ORI), derived from Chinese herbs Rabdosia rubescens, has anti-inflammatory, proapoptotic, anticancer effects. Previous studies have found that ORI induces apoptosis in rheumatoid arthritis fibroblast synovial cells (RA-FLSs), but this mechanism is not clear. We will investigate the apoptosis mechanism of ORI on RA-FLSs. RA-FLSs were treated with various concentrations of ORI (0, 5, 10, 15, 20, 25, and 30 µM) for 24 h. CCK8, LDH, and hochest/PI assay determined the viability, cytotoxicity, and death of ORI on RA-FLSs. The endoplasmic reticulum probe was used to observe structural changes of endoplasmic reticulum in RA-FLSs. RNA expression was detected with RNA sequencing analysis and quantitative real-time PCR. The PERK/eIF2α/CHOP pathway protein of the endoplasmic reticulum was verified with Western Blot. Our results show that ORI induced the apoptosis of RA-FLSs from CCK8, LDH, and Hochest/PI. The endoplasmic reticulum distribution was altered in RA-FLSs after being treated with ORI. Bioinformatics analysis of RNA sequencing data found that 1453 genes were elevated. The PERK/eIF2α/CHOP pathway of the endoplasmic reticulum was regulated from the Gene ontology and KEGG analysis. The results of quantitative real-time PCR and Western blot analysis verified the regulation of PERK/eIF2α/CHOP pathway in RA-FLSs. Our data imply that the endoplasmic reticulum's PERK/eIF2α/CHOP signaling pathway is certainly implicated in the induction of RA-FLS apoptosis by ORI. This study has important implications for the pharmacological effects of ORI and the treatment of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Artrite Reumatoide/genética , Apoptose , Fibroblastos/metabolismo , Estresse do Retículo Endoplasmático , Proliferação de Células , Células Cultivadas
11.
RNA ; 29(12): 1960-1972, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793791

RESUMO

Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells before cell lysate preparation significantly simplifies lysate preparation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.


Assuntos
Fator de Iniciação 2 em Eucariotos , Proteínas , Humanos , Células HEK293 , Fosforilação , Proteínas/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Biossíntese de Proteínas , Sistema Livre de Células/metabolismo
12.
Mol Cell ; 83(18): 3303-3313.e6, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37683648

RESUMO

Cells respond to intrinsic and extrinsic stresses by reducing global protein synthesis and activating gene programs necessary for survival. Here, we show that the integrated stress response (ISR) is driven by the non-canonical cap-binding protein eIF3d that acts as a critical effector to control core stress response orchestrators, the translation factor eIF2α and the transcription factor ATF4. We find that during persistent stress, eIF3d activates the translation of the kinase GCN2, inducing eIF2α phosphorylation and inhibiting general protein synthesis. In parallel, eIF3d upregulates the m6A demethylase ALKBH5 to drive 5' UTR-specific demethylation of stress response genes, including ATF4. Ultimately, this cascade converges on ATF4 expression by increasing mRNA engagement of translation machinery and enhancing ribosome bypass of upstream open reading frames (uORFs). Our results reveal that eIF3d acts in a life-or-death decision point during chronic stress and uncover a synergistic signaling mechanism in which translational cascades complement transcriptional amplification to control essential cellular processes.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Regiões 5' não Traduzidas , Fator de Iniciação 2 em Eucariotos/genética , Fases de Leitura Aberta , Fosforilação , Proteínas de Ligação ao Cap de RNA , Humanos
13.
J Biol Chem ; 299(11): 105287, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742919

RESUMO

The integrated stress response (ISR) protects cells from a variety of insults. Once elicited (e.g., by virus infections), it eventually leads to the block of mRNA translation. Central to the ISR are the interactions between translation initiation factors eIF2 and eIF2B. Under normal conditions, eIF2 drives the initiation of protein synthesis through hydrolysis of GTP, which becomes replenished by the guanine nucleotide exchange factor eIF2B. The antiviral branch of the ISR is activated by the RNA-activated kinase PKR which phosphorylates eIF2, thereby converting it into an eIF2B inhibitor. Here, we describe the recently solved structures of eIF2B in complex with eIF2 and a novel escape strategy used by viruses. While unphosphorylated eIF2 interacts with eIF2B in its "productive" conformation, phosphorylated eIF2 [eIF2(αP)] engages a different binding cavity on eIF2B and forces it into the "nonproductive" conformation that prohibits guanine nucleotide exchange factor activity. It is well established that viruses express so-called PKR antagonists that interfere with double-strand RNA, PKR itself, or eIF2. However recently, three taxonomically unrelated viruses were reported to encode antagonists targeting eIF2B instead. For one antagonist, the S segment nonstructural protein of Sandfly fever Sicilian virus, atomic structures showed that it occupies the eIF2(αP)-binding cavity on eIF2B without imposing a switch to the nonproductive conformation. S segment nonstructural protein thus antagonizes the activity of PKR by protecting eIF2B from inhibition by eIF2(αP). As the ISR and specifically eIF2B are central to neuroprotection and a wide range of genetic and age-related diseases, these developments may open new possibilities for treatments.


Assuntos
Fator de Iniciação 2B em Eucariotos , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Biossíntese de Proteínas , RNA/metabolismo , Humanos , Animais
14.
Cell Rep ; 42(8): 112987, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581984

RESUMO

Many positive-strand RNA viruses, including all known coronaviruses, employ programmed -1 ribosomal frameshifting (-1 PRF) to regulate the translation of polycistronic viral RNAs. However, only a few host factors have been shown to regulate -1 PRF. Through a genome-wide CRISPR-Cas9 knockout screen, we have identified host factors that either suppress or enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -1 PRF. Among them, eukaryotic translation initiation factor 2A (eIF2A) specifically and directly enhances -1 PRF independent of changes in initiation. Consistent with the crucial role of efficient -1 PRF in transcriptase/replicase expression, loss of eIF2A reduces SARS-CoV-2 replication in cells. Furthermore, transcriptome-wide analysis shows that eIF2A preferentially binds CG-rich RNA motifs, including a region within 18S ribosomal RNA near the contacts between the SARS-CoV-2 frameshift-stimulatory element (FSE) and the ribosome. Thus, our results indicate a role for eIF2A in modulating the translation of specific RNAs independent of its role during initiation.


Assuntos
COVID-19 , Fator de Iniciação 2 em Eucariotos , Mudança da Fase de Leitura do Gene Ribossômico , SARS-CoV-2 , Humanos , COVID-19/genética , Sequências Reguladoras de Ácido Nucleico , RNA Viral/genética , SARS-CoV-2/genética , Fator de Iniciação 2 em Eucariotos/genética
15.
Aging (Albany NY) ; 15(14): 6834-6847, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37462732

RESUMO

In this study we sought to analyze the critical role of oxidized phospholipid (OxPL) in the progression of calcific aortic valve disease (CAVD) with the involvement of activating transcription factor 4 (ATF4). Differentially expressed genes related to CAVD were identified using bioinformatics analysis. Expression of ATF4 was examined in mouse models of aortic valve calcification (AVC) induced by the high cholesterol (HC) diet. Valvular interstitial cells (VICs) were then isolated from mouse non-calcified valve tissues, induced by osteogenic induction medium (OIM) and co-cultured with OxPAPC-stimulated macrophages. The effect of OxPLs regulating ATF4 on the macrophage polarization and osteogenic differentiation of VICs was examined with gain- and loss-of-function experiments in VICs and in vivo. In aortic valve tissues and OIM-induced VICs, ATF4 was highly expressed. ATF4 knockdown alleviated the osteogenic differentiation of VICs, as evidenced by reduced expression of bone morphogenetic protein-2 (BMP2), osteopontin (OPN), and osteocalcin. In addition, knockdown of ATF4 arrested the AVC in vivo. Meanwhile, OxPL promoted M1 polarization of macrophages and mediated osteogenic differentiation of VICs. Furthermore, OxPL up-regulated ATF4 expression through protein kinase R-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2 subunit alpha (eIF2α) pathway. In conclusion, OxPL can potentially up-regulate the expression of ATF4, inducing macrophages polarized to M1 phenotype, osteogenic differentiation of VICs and AVC, thus accelerating the progression of CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Valva Aórtica , Estenose da Valva Aórtica/metabolismo , Calcinose/genética , Calcinose/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Osteogênese/genética , Fosfolipídeos/metabolismo , Proteínas Quinases/metabolismo
16.
J Struct Biol ; 215(3): 108006, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507029

RESUMO

Eukaryotic initiation factor 2 (eIF2) plays a key role in protein synthesis and in its regulation. The assembly of this heterotrimeric factor is facilitated by Cdc123, a member of the ATP grasp family that binds the γ subunit of eIF2. Notably, some mutations related to MEHMO syndrome, an X-linked intellectual disability, affect Cdc123-mediated eIF2 assembly. The mechanism of action of Cdc123 is unclear and structural information for the human protein is awaited. Here, the crystallographic structure of human Cdc123 (Hs-Cdc123) bound to domain 3 of human eIF2γ (Hs-eIF2γD3) was determined. The structure shows that the domain 3 of eIF2γ is bound to domain 1 of Cdc123. In addition, the long C-terminal region of Hs-Cdc123 provides a link between the ATP and Hs-eIF2γD3 binding sites. A thermal shift assay shows that ATP is tightly bound to Cdc123 whereas the affinity of ADP is much smaller. Yeast cell viability experiments, western blot analysis and two-hybrid assays show that ATP is important for the function of Hs-Cdc123 in eIF2 assembly. These data and recent findings allow us to propose a refined model to explain the mechanism of action of Cdc123 in eIF2 assembly.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Proteínas de Saccharomyces cerevisiae , Humanos , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Retardo Mental Ligado ao Cromossomo X/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
17.
PLoS Pathog ; 19(6): e1011443, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327222

RESUMO

The host always employs various ways to defend against viral infection and spread. However, viruses have evolved their own effective strategies, such as inhibition of RNA translation of the antiviral effectors, to destroy the host's defense barriers. Protein synthesis, commonly controlled by the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), is a basic cellular biological process among all species. In response to viral infection, in addition to inducing the transcription of antiviral cytokines by innate immunity, infected cells also inhibit the RNA translation of antiviral factors by activating the protein kinase R (PKR)-eIF2α signaling pathway. Regulation of innate immunity has been well studied; however, regulation of the PKR-eIF2α signaling pathway remains unclear. In this study, we found that the E3 ligase TRIM21 negatively regulates the PKR-eIF2α signaling pathway. Mechanistically, TRIM21 interacts with the PKR phosphatase PP1α and promotes K6-linked polyubiquitination of PP1α. Ubiquitinated PP1α augments its interaction with PKR, causing PKR dephosphorylation and subsequent translational inhibition release. Furthermore, TRIM21 can constitutively restrict viral infection by reversing PKR-dependent translational inhibition of various previously known and unknown antiviral factors. Our study highlights a previously undiscovered role of TRIM21 in regulating translation, which will provide new insights into the host antiviral response and novel targets for the treatment of translation-associated diseases in the clinic.


Assuntos
RNA , Viroses , Humanos , RNA/metabolismo , eIF-2 Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação , Antivirais , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Replicação Viral
18.
Dev Comp Immunol ; 145: 104732, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172664

RESUMO

The interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms of the innate immune system. Upon binding of viral double stranded RNA, a viral Pattern Associated Molecular Pattern (PAMP), PKR gets activated and phosphorylates the eukaryotic translation initiation factor 2α (eIF2α) resulting in a protein shut-down that limits viral replication. Since its discovery in the mid-seventies, PKR has been shown to be involved in multiple important cellular processes including apoptosis, proinflammatory and innate immune responses. Viral subversion mechanisms of PKR underline its importance in the antiviral response of the host. PKR activation pathways and its mechanisms of action were previously identified and characterised mostly in mammalian models. However, fish Pkr and fish-specific paralogue Z-DNA-dependent protein kinase (Pkz) also play key role in antiviral defence. This review gives an update on the current knowledge on fish Pkr/Pkz, their conditions of activation and their implication in the immune responses to viruses, in comparison to their mammalian counterparts.


Assuntos
Antivirais , eIF-2 Quinase , Animais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Peixes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata , RNA de Cadeia Dupla , Fosforilação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos/genética
19.
J Biomed Sci ; 30(1): 32, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217939

RESUMO

BACKGROUND: Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS: We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS: Our research identified eIF2α, eIF2ß, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS: Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.


Assuntos
Arginina , Fator de Iniciação 2 em Eucariotos , Heme Oxigenase-1 , Antioxidantes , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Heme Oxigenase-1/genética , Homeostase , Espécies Reativas de Oxigênio/metabolismo , Humanos
20.
EMBO Rep ; 24(5): e57231, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37021481

RESUMO

The cellular integrated stress response (ISR) is a central signaling pathway that tunes translation initiation in response to a wide range of cellular insults to promote cell survival. The critical node of this regulation involves the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) by stress kinases. In this issue of EMBO reports, Wu et al (2023) report FAM69C as a novel eIF2α kinase that promotes ISR activation and stress granule (SG) assembly in microglia in response to oxidative stress. This work proposes a protective role for FAM69C and SGs in limiting damaging inflammatory responses commonly associated with neurodegenerative diseases.


Assuntos
Microglia , eIF-2 Quinase , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Microglia/metabolismo , Fosforilação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...